-クロ波・ミリ波伝

こすことがある。しかも、電磁波 果、近接した配線間で発生した電 が影響していることには気付きに 磁波が干渉し、製品が誤動作を起 に接近することになる。その結 配線が集約され、配線同士が非常 トに高集積化される傾向にある。 でおり、その基板もよりコンパク それにより、狭い基板内に多くの 昨今、電子機器の小型化が進ん けるEMC問題。特に、送受信に

EMCがPCBに起こす問題 に対する研究

Ⅰ)に関する研究。 で一定かを意味する電源品質(P おける歪みを表す信号品質(SI) 基板上での電源電圧がどこま

組み、パソコンのCPUのように 研究における最前線の課題に取り 技術の研究。この研究ではEMC ● EMC に関するさまざまな計測

階でも電磁波に配慮しているもの では原因究明が難しい上、設計段 は少ないのが現実である。 くく、いったん組み上がった製品 当研究室では、未解明なことが

多以EMC(Electromagnetic ●PCB(プリント回路基板)にお 3つの点に注目している。 の研究を行っており、中でも次の Compatibility: 電磁環境両立性)

欠落の影響についても調べてい いる。最近の電子機器は多層化さ 路間の結合現象であるクロストー を与えるか、グランドに関しての によって電磁波にどのような影響 れているので、配線の長さや形状 クのメカニズムについて研究して PCB関係の研究では、伝送線

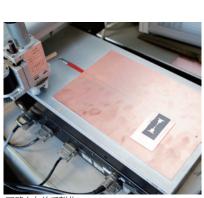
測定を行っている。 ティ(電磁耐性)測定の、 機器がある際の電磁波のイミュニ 定と、パソコンのそばに他の電子 クロックで発生する放射電磁波測

ログラムの開発。 PCBのEMC設計に活用でき ●電磁界解析の研究。具体的には 磁界の可視化を実現するためのプ 電磁界の3次元解析による電

る。これらのことを法則化するこ

開発している。これにより、一度

4-Septum (4内導体) TEM Cell を


とで、EMCに強い基板作りが可

既存のTEM Cellは、計測対象に 機器を入れて、強い電磁界をかけ れる。この装置はボックスに電子 をゆっくり回転することができる 当研究室では電磁界をかける方向 た時の反応を調べるものである。 Magnetic) Cellという装置が使わ EMC計測と計測装置の開発 妓〜TEM(Transverse Electro 方向だけの電磁界をかけるが、 EMC計測技術の研究に関して

3方向磁界測定用プロ

磁界を回転させるには専用の信号

て測定することが可能になる。電 あらゆる方向からの電磁界をかけ 計測対象を装置にセットすれば、

回路も自前で製作

環境電磁工学、 電磁環境両立性 (EMC)、プリント回路基板(PCB)、イ ミュニティ(電磁耐性)、クロストーク、 TEM Cell、4-Septum TEM Cell、

マイクロ波、マイクロ波イメージング		
	所属	大学院情報理工学研究科 情報・ネットワーク工学専攻 宇宙・電磁環境研究センター
	メンバー	肖 鳳超 教授
	所属学会	電子情報通信学会シニアメン バー、IEEEシニアメンバー
	E-mail	f.xiao@uec.ac.jp
	研究設備	電磁界シミュレータ(HFSS、EZ-FDTD)、ネットワークアナライザ、スペクトラムアナライザ、サンプリングオシロスコープ、タイムドメインリフレクトメータ、インピーダンスアナライザ、シグナルジェネレータ、 基 板 加 工 機、TEM Cell、GTEM Cell、クワッドリッジホーンアンテナ、双 偏 波

LPDA

ナノテクノロジー・材料

ライフサイエンス

環 境

エネルギー

界の回転が証明されている。 る。実際に測定した結果でも電磁 信号回路も当研究室で製作してい を作らなければならないが、この

PCBガイドライン 他に例の無い、 EMC に強

をして電磁波放出のメカニズムを することから電界や電力流の測定 されたとは言えず、 研究しているのは、当研究室だけ にある。今のところ、磁界を測定 環境電磁工学の学問体系は確立 現在発展途上

かして、 行っているので、性能を求めるこ 板はコンピュータを使って設計を ラインを作成している。 なった。このようなノウハウを活 だめなのかを規定できるように どこまでは大丈夫で、どこからが を具体的に実験してきたことで 害波の問題が生じたときには対策 えずに設計してしまうと、電磁妨 設計段階でEMCに対して何も考 とを最優先にしている。 トレースに影響しないような間隔 してさまざまな共同研究を行い、 PCBにおけるEMC測定に関 基板配線のEMCガイド 最近の基 しかし、

> 室のガイドラインに従って設計を 合いがある。 は世界各地の多くの企業から引き 行えば、妨害波に強いものが作れ に時間がかかる。そこで、当研究 そのため、このガイドライン

EMC計測器の製作

Cellは、 また、 得られるのも大きなアドバンテー 定ができ、よりリアルなデータが るが、この装置では実データの測 しており、 当研究室製作の4-Septum TEM 他の方向は推測するだけであ 通常は1方向だけ測定し 印加方向を電子的に制御 短時間で測定できる。

4-Septum TEM Cell

自動車分野への進出

ある。 なり、 どの電子機器も搭載されるように 動車には、ラジオやCDに加え 界の電子機器にも関心がある。 がラジオに影響している可能性が 長いハーネスから出ている電磁波 ことが起こる。この原因として しくなってきている。簡単な例で また、新しい分野で、自動車業 ラジオに雑音が入るといった 最近ではカーナビやETCな それらが共存することが難 電化の進む自動車業界で

い、4-Septum TEM Cellの製品化

うには、 電磁界の方向が一方向だけなの セットし直さなくてはならない。 既存のTEM Cellの場合、 異なる印加方向での測定を行 測定対象物を別の方向に 印加

を目指している。 ジである。今後は共同研究を行

は で

EMC研究の確立 今後の展開

るようになる。 このような EMC みが分かれば、適切な対策が施せ 究ではあるが、今後、放射の仕組 研究を積み上げて、EMCに関す る問題を解決していきたい。 分からないことも多いEMC研

noslot=5.64 - HFSSDesign1 - 3D Modeler An coff Corporatio XY Plot 1 HF88 De cign 1 Objects

obj An coft Corporate
XY Plot 1
HF88De cign 1

グランドの欠落を利用する広帯域マイクロ波フィルタ

となることが予想される。その中 当研究室のEMC技術が業界 EMCの問題はいっそう重要

> の牽引役になるよう積極的に展 していきたいと考えている。